Big Data

; | ll | E)
JUmMP INT[] 14HE E%{(VINGQIURL

OF:DATA SEMA GEME |

Pnncq bles of Database|Manag ' with the : datab
management information to understand and apply the fundamental con pts of
databdse design'and modeling, database systems; data storage, and thelevolving world
of data warehousing, governance and more. Designed for those studying datal
management for information management or computer science, this illustrates
textbook has a well-balanced theory—practice focus and covers the essential tapics,
from hnologies up to recent trends like Big Data, NoSQL, and
analytics. On-going case studies, dnll down boxes that reveal deeper insights on key,
topics, retention questions at the end of every section of a chapter, and connections
boxes that show the relationship between concepts throughout the text are included to
provide the practical tools to get started in database management.

KEY FEATURES INCLUDE:
* Full-color illustrations throughout the text.

= Extensive coverage of important trending topics, including data warehousing, business
intelligence, data integration, data quality, data governance, Big Data and analytics.

An online playground with diverse envi including MySQL for querying;
MongoDB; Neodj Cypher; and a tree structure visualization environment.
Hundreds of examples to illustrate and clarify the concepts discussed that can be
reproduced on the book’s companion online playground.

Case studies, review questions, problems and exercises in every chapter.

and ises in the

Additional cases, p

Online Resources
www.cambridge.org/

Instructor’s resources

M Solutions manual
S Code and data for examples

ISBN 978
Cover illustration: @Chen Hanquan / DigitalVision / Getty lmages.
Cover design: Andrew Ward.

9781107

WWW.

186125">

WILFRIED LEMAHIEU
SEPPE VANDEN BROUCKE
BART BAESENS

v MAHYIAT

SN3S3v8 ONY

I4IN0YE NIANYA

;

PRINCIPLES OF
DATABASE

MANAGEMENT

THE PRACTICAL GUIDE TO STORING. MANAGING
AND ANALYZING BIG AND SMALL DATQ”

ldd

_l AJ‘ J
>‘i,.

L
-
.
rm
w
o
By

INIW3IVNVIN 3SVE

dbmbook.com

http://www.pdbmbook.com/

Introduction

The 5 V’s of Big Data
Hadoop

SQL on Hadoop
Apache Spark

The 5 V’s of Big Data

* Every minute:
— More than 300000 tweets are created

— Netflix subscribers are streaming more than 70000
hours of video at once

— Apple users download 30000 apps
— Instagram users like almost 2 million photos

* Big Data encompasses both structured and highly
unstructured forms of data

The 5 V’s of Big Data

Volume: the amount of data, also referred to the
data “at rest”

Velocity: the speed at which data comes in and goes
out, data “in motion”

Variety: the range of data types and sources that are
used, data in its “many forms”

Veracity: the uncertainty of the data, data “in
doubt”

Value: TCO and ROI of the data

The 5 V’s of Big Data

 Examples:
— Large scale enterprise systems (e.g., ERP, CRM, SCM)
— Social networks (e.g., Twitter, Weibo, WeChat)
— Internet of Things
— Open data

Hadoop

* Open-source software framework used for
distributed storage and processing of big datasets

* Can be set up over a cluster of computers built
from normal, commodity hardware

 Many vendors offer their implementation of a
Hadoop stack (e.g. Amazon, Cloudera, Dell, Oracle,
IBM, Microsoft)

Hadoop

* History of Hadoop
 The Hadoop stack

History of Hadoop

* Key building blocks:

— Google File System: a file system that could be easily distributed
across commodity hardware, whilst providing fault tolerance

— Google MapReduce: a programming paradigm to write programs
that can be automatically parallelized and executed across a
cluster of different computers

* Nutch web crawler prototype developed by Doug Cutting
— Later renamed to Hadoop

* |In 2008, Yahoo! open-sourced Hadoop as “Apache
Hadoop”

The Hadoop Stack

e Four modules:

— Hadoop Common: a set of shared programming
libraries used by the other modules

— Hadoop Distributed File System (HDFS): a Java-based
file system to store data across multiple machines

— MapReduce framework: a programming model to
process large sets of data in parallel

— YARN (Yet Another Resource Negotiator): handles the
management and scheduling of resource requests in a
distributed environment

Hadoop Distributed File System (HDFS)

* Distributed file system to store data across a
cluster of commodity machines

* High emphasis on fault-tolerance

 HDFS cluster is composed of a NameNode and
various DataNodes

Hadoop Distributed File System (HDFS)

* NameNode
— a server which holds all the metadata regarding the stored files
— manages incoming file system operations
— maps data blocks (parts of files) to DataNodes

e DataNode

— handles file read and write requests

— create, delete and replicate data blocks amongst their disk
drives

— continuously loop, asking the NameNode for instructions.

* Note: size of 1 data block is typically 64 megabytes

Hadoop Distributed File System (HDFS)

What is in “/mydir/"?

“bigfile.txt” is there
according to my records
| have two replicas

The size is 1GB

A

NameNode SecondaryNameNode

H__“""“*-n,___A_r_wything to do for me?

DataNode DataNode DataNode DataNode

Hadoop Distributed File System (HDFS)

block 2 from DataNode 3,
block 3 from ...

Read out block 1

0Ok, read block 1 from DataNode 1,

| want to read “/mydir/bigfile.txt”

NameNode |« SecondaryNameNode
S
Anythlng to do for me?
DataNode DataNode DataNode DataNode
|] B

13

Hadoop Distributed File System (HDFS)

Ok, write block 1 to DataNode 1
block 2 to ...

Write block 1

| want to write “/mydir/bigfile2.txt” with 2 replicas

NameNode |« SecondaryNameNode
) Anythmg to do for me?
DataNode DataNode DataNode DataNode
| |

14

Hadoop Distributed File System (HDFS)

NameNode

.i‘ f':: :;‘-:: e

You guys need to create a replica
of some of your blocks! Replicate .
block 1 to DataNode 2, block 2 to ... /

“__“"'“---n___Aﬁ_nything to do for me?

SecondaryNameNode

DataNode
|

DataNode

[

DataNode

[

DataNode

N

Replicate block 1

N

15

Hadoop Distributed File System (HDFS)

 HDFS provides a native Java API to allow for writing
Java programs that can interface with HDFS

String filePath = “/data/all my customers.csv”’;
Configuration config = new Configuration();
org.apache.hadoop.fs.FileSystem hdfs =
org.apache.hadoop.fs.FileSystem.get(config);
org.apache.hadoop.fs.Path path = new
org.apache.hadoop.fs.Path(filePath);
org.apache.hadoop.fs.FSDataInputStream inputStream =
hdfs.open(path);

byte[] received = new byte[inputStream.available()];
inputStream.readFully(received);

Hadoop Distributed File System (HDFS)

/] ...
org.apache.hadoop.fs.FSDataInputStream inputStream = hdfs.open(path);

byte[] buffer=new byte[1024]; // Only handle 1KB at once
int bytesRead;

while ((bytesRead = in.read(buffer)) > 0) {
// Do something with the buffered block here
}

Hadoop Distributed File System (HDFS)

hadoop fs -mkdir mydir Create a directory on HDFS
hadoop fs -1s List files and directories on HDFS
hadoop fs -cat myfile View a file’s content

hadoop fs -du Check disk space usage on HDFS
hadoop fs -expunge Empty trash on HDFS

hadoop fs -chgrp mygroup myfile |Change group membership of a file on HDFS

hadoop fs -chown myuser myfile Change file ownership of a file on HDFS

hadoop fs -rm myfile Delete a file on HDFS

hadoop fs -touchz myfile Create an empty file on HDFS

hadoop fs -stat myfile Check the status of a file (file size, owner, ...)
hadoop fs -test -e myfile Check if file exists on HDFS

hadoop fs -test -z myfile Check if file is empty on HDFS

hadoop fs -test -d myfile Check if myfile is a directory on HDFS

MapReduce

* Programming paradigm made popular by Google
and subsequently implemented by Apache
Hadoop

* Focus on scalability and fault tolerance

* A map-reduce pipeline starts from a series of
values and maps each value to an output using a
given mapper function

MapReduce

* High-level Python example
— Map
>>> numbers = [1,2,3,4,5]
>>> numbers.map(lambda x : x * x) # Map a
function to our list
[1,4,9,16,25]
— Reduce

>>> numbers.reduce(lambda x : sum(x) + 1)
Reduce a list using given function
16

MapReduce

A MapReduce pipeline in Hadoop starts from a list of key-
value pairs, and maps each pair to one or more output
elements

The output elements are also key-value pairs

Next, the output entries are grouped so all output entries
belonging to the same key are assigned to the same
worker (e.g. physical machine)

These workers then apply the reduce function to each
group, producing a new list of key-value pairs

The resulting, final outputs can then be sorted

MapReduce

 Reduce-workers can already get started on their
work even although not all mapping operations
have finished yet

* |Implications:

— the reduce function should output the same key-value
structure as the one emitted by the map function

— the reduce function itself should be built in such a way
so it provides correct results, even if called multiple
times

MapReduce

* In Hadoop, MapReduce tasks are written in Java

* To run a MapReduce task, a Java program is packaged as a

JAR archive and launched as:
hadoop jar myprogram.jar TheClassToRun [args...]

MapReduce

 Example: Java program to count the appearance of

a word in a file

import
import
import
import
import
import
import

java.io.IOException;

org.
org.
org.
org.
org.
org.

apache.
apache.
apache.
apache.
apache.
apache.

hadoop.
hadoop.
hadoop.
hadoop.
hadoop.
hadoop.

public class WordCount {

// Following fragments

}

conf.Configuration;

fs.*;

io.*;

mapreduce.*;
mapreduce.lib.input.TextInputFormat;
mapreduce.lib.output.FileQutputFormat;

will be added here

MapReduce

* Define mapper function as a class extending the
built-in Mapper<KeyIn, Valueln, KeyOut,
ValueOut> class, indicating which type of key-
value input pair we expect and which type of key-

value output pair our mapper will emit

MapReduce

public static class MyMapper extends Mapper<Object, Text, Text, IntWritable> {

// Our input key is not important here, so it can just be any generic object. Our input value is a piece of text (a line)
// Our output key will also be a piece of text (a word) . Our output value will be an integer.

public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
// Take the value, get its contents, convert to lowercase,
// and remove every character except for spaces and a-z values:
String document = value.toString().toLowerCase().replaceAll("[~a-z\\s]", "");
// Split the line up in an array of words
String[] words = document.split(" ");

// For each word...
for (String word : words) {
// "context" is used to emit output values

// Note that we cannot emit standard Java types such as int, String, etc. Instead, we need to use
// a org.apache.hadoop.io.* class such as Text (for string values) and IntWritable (for integers)

Text textWord = new Text(word);
IntWritable one = new IntWritable(1);

// ... simply emit a (word, 1) key-value pair:
context.write(textWord, one);

26

MapReduce

Input key-value pairs

Key <Object> Value <Text>
0 This is the first line
23 And this is the second line, and this is all

Mapped key-value pairs

Key <Text> Value <IntWritable>

this

is

the

first

line

and

O O N N T

27

MapReduce

* reducer function is specified as a class
extending the built-in Reducer<KeyIn,
ValuelIn, KeyOut, ValueOut> class

MapReduce

public static class MyReducer extends Reducer<Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterable<IntWritable> values, Context context)

throws IOException, InterruptedException {

int sum = 0;

IntWritable result = new IntWritable();

// Summarise the values so far...

for (IntWritable val : values) {
sum += val.get();

}

result.set(sum);

// ... and output a new (word, sum) pair

context.write(key, result);

29

MapReduce

Mapped key-value pairs

Key <Text> Value <IntWritable>
this 1

is 1

the 1

first 1

line 1

and 1

this 1

is 1

Mapped key-value pairs for “this”

Key <Text> Value <IntWritable>
this 1
this 1

Reduced key-value pairs for “this”

Key <Text>

Value <IntWritable>

this

1+1=2

MapReduce

public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();

// Set up a MapReduce job with a sensible short name:

Job job = Job.getInstance(conf, "wordcount"); // The second argument is the output directory on
// HDFS

// Tell Hadoop which JAR it needs to distribute Path outputDir = new Path(args[1]);

// to the workers. // Tell Hadoop what our desired output structure is

// We can easily set this using setJarByClass FileOutputFormat.setOutputPath(job, outputDir);

job.setJarByClass(WordCount.class);

// Delete the output directory if it exists

job.setMapperClass(MyMapper.class); FileSystem fs = FileSystem.get(conf);

job.setReducerClass(MyReducer.class); fs.delete(outputDir, true);

// What does the output look like? // Stop after our job has completed

job.setOutputKeyClass(Text.class); System.exit(job.waitForCompletion(true) ?» @ : 1);

job.setOutputValueClass(IntWritable.class); }

// Our program expects two arguments, the first one is the input
// file on HDFS

// Tell Hadoop our input is in the form of TextInputFormat
// (Every line in the file will become value to be mapped)
TextInputFormat.addInputPath(job, new Path(args[@]));

31

MapReduce

hadoop jar wordcount.jar WordCount /users/me/dataset.txt /users/me/output/

B Command Prompt -
[root@sandbox Desktop]$ hadoop jar wordcount.jar WordCount /users/me/dataset.txt /users/me/output/
17/63/16 15:14:23 INFO impl.TimelineClientlmpl: Timeline service address: http://sandbox.hortonworks.com:8188/ws/v1l/timeline/
17/03/16 15:14:23 INFO client.RMProxy: Connecting to ResourceManager at sandbox.hortonworks.com/172.17.8.2:8058@
17/03/16 15:14:23 INFO client.AHSProxy: Connecting to Application History server at sandbox.hortonworks.com/172.17.0.2:10260
17/03/16 15:14:23 WARN mapreduce.JobResourceUploader: Hadoop command-line option parsing not performed.
Implement the Tool interface and execute your application with ToolRunner to remedy this.
17/©3/16 15:14:23 INFO input.FilelnputFormat: Total input paths to process : 1
17/03/16 15:14:23 INFO lzo.GPLNativeCodeloader: Loaded native gpl library
17/03/16 15:14:23 INFO lzo.lLzoCodec: Successfully loaded & initialized native-1zo library
[hadoop-1zo rev 7a4b57bedce694048432dd5bf5b90a6c8ccdbage]
17/63/16 15:14:24 INFO mapreduce.JobSubmitter: number of splits:1
17/03/16 15:14:24 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1489673597652_ 0001
17/03/16 15:14:24 INFO impl.YarnClientlmpl: Submitted application application_14896735970852_0001
17/03/16 15:14:25 INFO mapreduce.Job: The url to track the job: http://sandbox.hortonworks.com:8088/proxy/application_1489673597052_0001/
17/03/16 15:14:25 INFO mapreduce.Job: Running job: job_1489673597052_0001
17/03/16 15:14:42 INFO mapreduce.Job: Job job_1489673597052_ 0001 running in uber mode : false
17/©3/16 15:14:42 INFO mapreduce.Job: map 0% reduce 0%
17/03/16 15:14:49 INFO mapreduce.Job: map 100% reduce 8%
17/03/16 15:14:57 INFO mapreduce.Job: map 100% reduce 100%
17/03/16 15:14:57 INFO mapreduce.Job: Job job_1489673597052_00081 completed successfully
17/©3/16 15:14:57 INFO mapreduce.Job: Counters: 49
File System Counters

FILE: Number of bytes read=5269

FILE: Number of bytes written=298885

FILE: Number of read operations=0

FILE: Number of large read operations=e

FILE: Number of write operations-©

HDFS: Number of bytes read-2826

HDFS: Number of bytes written=2069

HDPS: Number of read operations=6

MapReduce

$ hadoop fs -1ls /users/me/output

Found 2 items
-rw-r—-r--1 root
-rw-r—-r--1 root

hdfs
hdfs

%) 2017-05-20 15:11
2069 2017-05-20 15:11

$ hadoop fs -cat /users/me/output/part-r-00000

and
first
is
line
second
the
this

2

W NEDNMNWER

/users/me/output/ SUCCESS
/users/me/output/part-r-00000

33

MapReduce

* Constructing MapReduce programs requires a
certain skillset in terms of programming

* Tradeoffs in terms of speed, memory
consumption, and scalability

Yet Another Resource Negotiator (YARN)

* Yet Another Resource Negotiator (YARN)
distributes a MapReduce program across different
nodes and takes care of coordination

 Three important services

— ResourceManager: a global YARN service that receives

and runs applications (e.g., a MapReduce job) on the
cluster

— JobHistoryServer: keeps a log of all finished jobs

— NodeManager: responsible to oversee resource
consumption on a node

Yet Another Resource Negotiator (YARN)

ResourceManager JobHistoryServer

NodeManager NodeManager

Yet Another Resource Negotiator (YARN)

Client
Run wordcom

“ ResourceManager

Yet Another Resource Negotiator (YARN)

How’s my program going?

Just scheduled it, please
contact this
ApplicationMaster for
further follow-up

" ResourceManager JobHistoryServer

b

I > Vac?
Ok, I've started Do you have resources to set up an ApplicationMaster? Yes? Go ahead

/ﬁodeManager NodeManager

ApplicationMaster
container

Yet Another Resource Negotiator (YARN)

A
How’s my program going?

Still working on it

ResourceManager JobHistoryServer
Who has

space for a u
container?

NodeManager 2 is

free, use that one Set up a container

for me and deploy
this map task which

/ NodeManager will repolW NodeManager
me

]

ApplicationMaster / Map

container — . container
Busy workiing,

almosti done...

Yet Another Resource Negotiator (YARN)

* Complex setup

* Allows to run programs and applications other
than MapReduce

SQL on Hadoop

* MapReduce very complex when compared to SQL

* Need for a more database-like setup on top of
Hadoop

SQL on Hadoop

* HBase

e Hive

HBase

First Hadoop database inspired by Google’s
Bigtable

Runs on top of HDFS
NoSQL alike data storage platform

— No typed columns, triggers, advanced query
capabilities, etc.

Offers a simplified structure and query language in

a way that is highly scalable and can tackle large

volumes

HBase

Similar to RDBMSs, HBase organizes data in tables
with rows and columns

HBase table consists of multiple rows

A row consists of a row key and one or more
columns with values associated with them

Rows in a table are sorted alphabetically by the
row key

HBase

Each column in HBase is denoted by a column
family and qualifier (separated by a colon, “:’)

A column family physically co-locates a set of
columns and their values

Every row has the same column families, but not
all column families need to have a value per row

Each cell in a table is hence defined by a
combination of the row key, column family and
column qualifier, and a timestamp

HBase

 Example: HBase table to store and query users
 The row key will be the user id

e column families:qualifiers
— name:first
— name:last
— email (without a qualifier)

HBase

hbase(main):001:0> create 'users', 'name', 'email'’
@ row(s) in 2.8350 seconds

=> Hbase::Table - users

hbase(main) :002:0> describe 'users'

Table users is ENABLED

users

COLUMN FAMILIES DESCRIPTION

{NAME => 'email', BLOOMFILTER => 'ROW', VERSIONS => '1', IN MEMORY => 'false', K
EEP_DELETED CELLS => 'FALSE', DATA BLOCK ENCODING => 'NONE', TTL => 'FOREVER', C
OMPRESSION => 'NONE', MIN_VERSIONS => '@', BLOCKCACHE => 'true', BLOCKSIZE => '6
5536', REPLICATION SCOPE => '@0'}

{NAME => 'name', BLOOMFILTER => 'ROW', VERSIONS => '1', IN_MEMORY => 'false', KE
EP DELETED CELLS => 'FALSE', DATA BLOCK ENCODING => 'NONE', TTL => 'FOREVER', CO
MPRESSION => 'NONE', MIN VERSIONS => '@', BLOCKCACHE => 'true', BLOCKSIZE => '65
536', REPLICATION SCOPE => '©'}

2 row(s) in ©.3250 seconds

a7

HBase

hbase(main):003:0> list 'users'
TABLE

users

1 row(s) in 0.0410 seconds

=> ["users”

48

HBase

hbase(main) :006:0>
@ row(s) in ©.0200

hbase(main) :007:0>
@ row(s) in ©.0330

hbase(main) :008:0>
@ row(s) in ©.0570

hbase(main) :009:0>
ROW
seppe

seppe
seppe
seppe

1 row(s) in 0.1170

put 'users', 'seppe', 'name:first', 'Seppe’
seconds

put 'users', 'seppe', 'name:last’', 'vanden Broucke'
seconds

put 'users', 'seppe', 'email', 'seppe.vandenbroucke@kuleuven'
seconds

scan 'users'
COLUMN+CELL
column=email:, timestamp=1495293082872, value=seppe.vanden
broucke@kuleuven.be
column=name:first, timestamp=1495293050816, value=Seppe
column=name:firstt, timestamp=1495293047100, value=Seppe
column=name:last, timestamp=1495293067245, value=vanden Broucke

seconds

49

HBase

hbase(main):011:0> get 'users', 'seppe'

COLUMN

email:
value=seppe

name:first
name:last
4 row(s) in

hbase(main)
@ row(s) in

hbase(main)
COLUMN

email:
1 row(s) in

CELL
timestamp=1495293082872,

.vandenbroucke@kuleuven.be

0.1250

:018:0>
0.0240

:019:0>

0.0330

timestamp=1495293050816, value=Seppe
timestamp=1495293067245, value=vanden Broucke

seconds

put 'users', 'seppe', 'email', 'seppe@kuleuven.be'
seconds

get 'users', 'seppe', 'email'

CELL

timestamp=1495293303079, value=seppe@kuleuven.be
seconds

50

HBase

 HBase’s query facilities are very limited

* Essentially a key-value, distributed data store with
simple get/put operations

* |Includes facilities to write MapReduce programs

* Hbase (similar to Hadoop) doesn’t perform well on
ess than 5 HDFS DataNodes with an additional
NameNode

— only makes the effort worthwhile when you can invest
in, set up and maintain at least 6-10 nodes

Pig

* Yahoo! Developed “Pig”, which was made open
source as Apache Pig in 2007

* High-level platform for creating programs that run

on Hadoop (in Pig Latin), which uses MapReduce
underneath

 Somewhat resembles querying facilities of SQL

Pig

timesheet = LOAD 'timesheet.csv' USING PigStorage(',');
raw_timesheet = FILTER timesheet by $0 > 100;

timesheet logged = FOREACH raw_timesheet GENERATE $0 AS
driverId, $2 AS hours_logged, $3 AS miles logged;

grp_logged = GROUP timesheet logged by driverld;

sum_logged = FOREACH grp logged GENERATE group as driverlId,
SUM(timesheet logged.hours logged) as sum_hourslogged,
SUM(timesheet logged.miles logged) as sum mileslogged;

Pig

 Some have argued that RDBMSs and SQL are
substantially faster than MapReduce — and hence

Pig
* Pig Latin is relatively procedural versus declarative
sQL

* No wide adoption

Hive

Initially developed by Facebook but open-sourced
afterwards

Data warehouse solution offering SQL querying
facilities on top of Hadoop

Converts SQL-like queries to a MapReduce
pipeline
Also offers a JDBC and ODBC interface

Can run on top of HDFS, as well as other file
systems

Hive

Hive Metastore stores metadata for each table such as its
schema and location on HDFS (using an RDBMS)

Driver service is responsible to receive and handle
Incoming queries

— query is first converted to an abstract syntax tree, which is then
converted to a directed acyclic graph representing an execution
plan

— the directed acyclic graph will contain a number of MapReduce
stages and tasks

Optimizer optimizes the directed acyclic graph

Executer sends MapReduce stages to Hadoop’s resource
manager (e.g. YARN) and monitor their progress

Hive

* HiveQL does not completely follow the full SQL-92
standard

— E.g., lacks strong support for indexes, transactions,
materialized views, and only has limited subquery
support

 Example:
SELECT genre, SUM(nrPages) FROM books

GROUP BY genre

* HiveQL also allows to query data sets other than
structured tables

Hive

CREATE TABLE docs (line STRING); -- create a docs table

-- load in file from HDFS to docs table, overwrite existing data:
LOAD DATA INPATH '/users/me/doc.txt' OVERWRITE INTO TABLE docs;

-- perform word count
SELECT word, count(l) AS count

FROM (-- split each line in docs into words
SELECT explode(split(line, '\s')) AS word FROM docs
) t

GROUP BY t.word
ORDER BY t.word;

Hive

* One difference with traditional RDBMS is that Hive does not
enforce the schema at the time of loading the data

— Hive: schema-on-read
— RDBMS: schema-on-write

* Recent versions of Hive support full ACID transaction
management

* Performance and speed of SQL queries still forms the main
disadvantage of Hive today

— Solutions to bypass MapReduce (e.g. Apache Tez, Cloudera Impala,
Facebook Presto)

Apache Spark

Open-source alternative for MapReduce

New programming paradigm centered on a data structure
called the resilient distributed dataset (RDD) which can be
distributed across a cluster of machines and is maintained
in a fault tolerant way

RDDs can enable the construction of iterative programs
that have to visit a data set multiple times, as well as
more interactive or exploratory programs

Many orders of magnitude faster than MapReduce
implementations

Rapidly adopted by many Big Data vendors

Apache Spark

* Similar to Hadoop, Spark works with HDFS and
requires a cluster manager (e.g. YARN)

* Key components

— Spark Core
— Spark SQL
— MLib, Spark Streaming, GraphX

Spark Core

* Foundation for all other components

* Provides functionality for task scheduling and a set
of basic data transformations that can be used
through many programming languages (e.g., Java,
Python, Scala, and R)

* RDDs are the primary data abstraction in Spark

— designed to support in-memory data storage and
operations, distributed across a cluster

Spark Core

Once data is loaded into an RDD, two basic types of
operations can be performed:

— Transformation which creates a new RDD through changing the
original one

— Actions which measure but do not change the original data

Transformations are lazily evaluated

— executed when a subsequent action has a need for the result
RDDs will also be kept as long as possible in memory

A chain of RDD operations gets compiled by Spark into a
directed acyclic graph but which is then spread out and
calculated over the cluster

Spark Core

A programmer writes a Spark program using its API:

rddl.join(rdd2).groupBy(..).filter(..)

Based on this, Spark builds
a directed acyclic graph of

operations with their dependencies /
—» worker

Spark’s graph scheduler splits

- the graph into subsets of ta;f(s/
— _I—} ~ which are then send to the - ——— worker
task scheduler e

—» worker

/ [
- [- ,-] Spark’s task scheduler

launches the tasks by

distributingthem across

|
-ll worker nodes

64

Spark Core

e Spark’s RDD API is relatively easy to work with
compared to writing MapReduce programs

Set up connection to the Spark cluster
sconf = SparkConf()
sc = SparkContext(master="'"', conf=sconf)

Load in an RDD from a text file, the RDD will represent a collection of
text strings (one for each line)
text_file = sc.textFile("myfile.txt")

Count the word occurrences

counts = text file.flatMap(lambda line: line.split("™ ")) \
.map(lambda word: (word, 1)) \

.reduceByKey(lambda a, b: a + b)

print(counts)

Spark SQL

e Spark SQL runs on top of Spark Core and introduces
another data abstraction called DataFrames

 DataFrames can be created from RDDs by specifying a
schema on how to structure the data elements in the
RDD, or can be loaded in directly from various sorts of file
formats

* Even although DataFrames continue to use RDDs behind
the scenes, they represent themselves to the end user as
a collection of data organized into named columns

Spark SQL

from pyspark.sql import SparkSession
spark = SparkSession.builder.appName("Spark example").getOrCreate()

Create a DataFrame object by reading in a file
df = spark.read.json("people.json")

df.show()
| age] name |

#
#
|null| Seppe]
| 30|Wilfried]|
| 19| Bart|
+----t-----e-- +

DataFrames are structured in columns and rows:

df.printSchema()

root

|-- age: long (nullable = true)

|-- name: string (nullable = true)

67

Spark SQL

df.select("name").show()

+-------- +
| name |
+-------- +
| Seppel
|Wilfried|
| Bart |
4= +

SQL-1like operations can now easily be expressed:
df.select(df['name'], df['age'] + 1).show()

+-------- L +
| name| (age + 1) |
+-------- L +
| Seppel null |
|Wilfried| 31|
| Bart | 20|
+-------- +---mmm - +

68

Spark SQL

df.filter(df['age'] > 21).show()

+---t-------- +
|agel name |
+---t-------- +
| 30|Wilfried|
+---t-------- +

df.groupBy("age").count().show()

+----+----- +
| age|count|
+----+----- +
| 19| 1]
|null| 1]
| 30| 1]
+----+----- +

69

Spark SQL

e Spark implements a full SQL query engine which can
convert SQL statements to a series of RDD
transformations and actions

Register the DataFrame as a SQL temporary view
df.createOrReplaceTempView("people")

sqlDF = spark.sql("SELECT * FROM people WHERE age > 21")
sqlDF.show()

+---F-------- +
|agel name |
+---F-------- +

MLlib, Spark Streaming and GraphX

 MLIib is Spark’s machine learning library

— offers classification, regression, clustering, and
recommender system algorithms

* MLlib was originally built directly on top of the
RDD abstraction

* New MLlib version works directly with SparkSQL’s
DataFrames based API

MLlib, Spark Streaming and GraphX

e Spark Streaming leverages Spark Core and its

fast scheduling engine to perform streaming
analytics

e Spark Streaming provides another high-level
concept called the DStream, which
represents a continuous stream of data

—represented as a sequence of RDD fragments

* DStreams provide windowed computations

MLlib, Spark Streaming and GraphX

Example: Word counting

from pyspark import SparkContext

from pyspark.streaming import StreamingContext

sc = SparkContext("local[2]", "StreamingWordCount")
ssc = StreamingContext(sc, 1)

Create a DStream that will connect to server.mycorp.com:9999 as a source
lines = ssc.socketTextStream("server.mycorp.com ", 9999)

Split each line into words
words = lines.flatMap(lambda line: line.split(" "))

Count each word in each batch
pairs = words.map(lambda word: (word, 1))
wordCounts = pairs.reduceByKey(lambda x, y: x + y)

Print out first ten elements of each RDD generated in the wordCounts Dstream
wordCounts.pprint()

Start the computation
ssc.start()
ssc.awaitTermination()

MLlib, Spark Streaming and GraphX

* GraphXis Spark’s component implementing
programming abstractions to deal with graph
based structures, again based on the RDD
abstraction

* GraphX comes with a set of fundamental
operators and algorithms to work with graphs and
simplify graph analytics tasks

Conclusion

The 5 V’s of Big Data
Hadoop

SQL on Hadoop
Apache Spark

More information?

- W
(! Ll { E

JUMP INTU 14HE E% _ VING‘IURL

e S .
N SN

OFDATABASE MA GEME»

Princigles of Database,
manqement information to

bdse design"and modeling, database systems; data storage, and the'evolving world
of data warehoising, governance and more. Designed for those studying datal
management for information management or computer science, this illustrates
textbook has a we" ba[anced theory practice focus and covers the essential tapics,
from blished ies up to recent trends like Big Data, NoSQL, and
analytics. On-going case studies, drill-down boxes that reveal deeper insights on key
topics, retention questions at the end of every section of a chapter, and connections
boxes that show the relationship b hroughout the text are included to
provide the practical tools to get started in database management.

with the

KEY FEATURES INCLUDE:
* Full-color illustrations throughout the text.

* Extensive coverage of important trending topics, including data warehousing, business
intelligence, data integration, data quality, data governance, Big Data and analytics.

An online playground with diverse environments, including MySQL for querying;
MongoDB; Neodj Cypher; and a tree structure visualization environment.

Hundreds of examples to illustrate and clarify the concepts discussed that can be
reproduced on the book’s companion online playground.

Case studies, review questions, problems and exercises in every chapter.

Additional cases, p: and it in the di

Online Resources
www.cambridge.org/

Instructor’s resources

M Solutions manual
M Code and data for examples

Cover illustration: @Chen Hanquan / DigitalVision / Getty lmages.
Cover design: Andrew Ward.

9"781107"186125

il)
1d and apply the fund: | col -

>

SN3S3 V8 ONY
T3IHYIWAT

I1IN0YE NIONYA

|

bl

<2
O
—
m
w
o)
M

INIWIIVNVIN 3SVE

.

WILFRIED LEMAHIEU
SEPPE VANDEN BROUCKE
BART BAESENS

PRINCIPLES OF
DATABASE

MANAGEMENT

THE PRACTICAL GUIDE TO STORING. MANAGING
AND ANALYZING BIG AND SMALL DAT&

www.pdbmbook.co

http://www.pdbmbook.com/

