
Big Data

www.pdbmbook.com

http://www.pdbmbook.com/

Introduction

• The 5 V’s of Big Data

• Hadoop

• SQL on Hadoop

• Apache Spark

2

The 5 V’s of Big Data

• Every minute:

– More than 300000 tweets are created

– Netflix subscribers are streaming more than 70000
hours of video at once

– Apple users download 30000 apps

– Instagram users like almost 2 million photos

• Big Data encompasses both structured and highly
unstructured forms of data

3

The 5 V’s of Big Data

• Volume: the amount of data, also referred to the
data “at rest”

• Velocity: the speed at which data comes in and goes
out, data “in motion”

• Variety: the range of data types and sources that are
used, data in its “many forms”

• Veracity: the uncertainty of the data, data “in
doubt”

• Value: TCO and ROI of the data
4

The 5 V’s of Big Data

• Examples:

– Large scale enterprise systems (e.g., ERP, CRM, SCM)

– Social networks (e.g., Twitter, Weibo, WeChat)

– Internet of Things

– Open data

5

Hadoop

• Open-source software framework used for
distributed storage and processing of big datasets

• Can be set up over a cluster of computers built
from normal, commodity hardware

• Many vendors offer their implementation of a
Hadoop stack (e.g. Amazon, Cloudera, Dell, Oracle,
IBM, Microsoft)

6

Hadoop

• History of Hadoop

• The Hadoop stack

7

History of Hadoop

• Key building blocks:

– Google File System: a file system that could be easily distributed
across commodity hardware, whilst providing fault tolerance

– Google MapReduce: a programming paradigm to write programs
that can be automatically parallelized and executed across a
cluster of different computers

• Nutch web crawler prototype developed by Doug Cutting

– Later renamed to Hadoop

• In 2008, Yahoo! open-sourced Hadoop as “Apache

Hadoop”

8

The Hadoop Stack

• Four modules:

– Hadoop Common: a set of shared programming
libraries used by the other modules

– Hadoop Distributed File System (HDFS): a Java-based
file system to store data across multiple machines

– MapReduce framework: a programming model to
process large sets of data in parallel

– YARN (Yet Another Resource Negotiator): handles the
management and scheduling of resource requests in a
distributed environment

9

Hadoop Distributed File System (HDFS)

• Distributed file system to store data across a
cluster of commodity machines

• High emphasis on fault-tolerance

• HDFS cluster is composed of a NameNode and
various DataNodes

10

Hadoop Distributed File System (HDFS)

• NameNode

– a server which holds all the metadata regarding the stored files

– manages incoming file system operations

– maps data blocks (parts of files) to DataNodes

• DataNode

– handles file read and write requests

– create, delete and replicate data blocks amongst their disk
drives

– continuously loop, asking the NameNode for instructions.

• Note: size of 1 data block is typically 64 megabytes

11

Hadoop Distributed File System (HDFS)

12

Hadoop Distributed File System (HDFS)

13

Hadoop Distributed File System (HDFS)

14

Hadoop Distributed File System (HDFS)

15

Hadoop Distributed File System (HDFS)

• HDFS provides a native Java API to allow for writing
Java programs that can interface with HDFS

String filePath = “/data/all_my_customers.csv”;
Configuration config = new Configuration();
org.apache.hadoop.fs.FileSystem hdfs =
org.apache.hadoop.fs.FileSystem.get(config);
org.apache.hadoop.fs.Path path = new
org.apache.hadoop.fs.Path(filePath);
org.apache.hadoop.fs.FSDataInputStream inputStream =
hdfs.open(path);
byte[] received = new byte[inputStream.available()];
inputStream.readFully(received);

16

Hadoop Distributed File System (HDFS)

// ...
org.apache.hadoop.fs.FSDataInputStream inputStream = hdfs.open(path);
byte[] buffer=new byte[1024]; // Only handle 1KB at once
int bytesRead;
while ((bytesRead = in.read(buffer)) > 0) {

// Do something with the buffered block here
}

17

Hadoop Distributed File System (HDFS)

18

hadoop fs -mkdir mydir Create a directory on HDFS

hadoop fs -ls List files and directories on HDFS

hadoop fs -cat myfile View a file’s content

hadoop fs -du Check disk space usage on HDFS

hadoop fs -expunge Empty trash on HDFS

hadoop fs -chgrp mygroup myfile Change group membership of a file on HDFS

hadoop fs -chown myuser myfile Change file ownership of a file on HDFS

hadoop fs -rm myfile Delete a file on HDFS

hadoop fs -touchz myfile Create an empty file on HDFS

hadoop fs -stat myfile Check the status of a file (file size, owner, …)

hadoop fs -test -e myfile Check if file exists on HDFS

hadoop fs -test -z myfile Check if file is empty on HDFS

hadoop fs -test -d myfile Check if myfile is a directory on HDFS

MapReduce

• Programming paradigm made popular by Google
and subsequently implemented by Apache
Hadoop

• Focus on scalability and fault tolerance

• A map-reduce pipeline starts from a series of
values and maps each value to an output using a
given mapper function

19

MapReduce

• High-level Python example

–Map

>>> numbers = [1,2,3,4,5]
>>> numbers.map(lambda x : x * x) # Map a
function to our list
[1,4,9,16,25]

– Reduce

>>> numbers.reduce(lambda x : sum(x) + 1)
Reduce a list using given function
16

20

MapReduce

• A MapReduce pipeline in Hadoop starts from a list of key-
value pairs, and maps each pair to one or more output
elements

• The output elements are also key-value pairs

• Next, the output entries are grouped so all output entries
belonging to the same key are assigned to the same
worker (e.g. physical machine)

• These workers then apply the reduce function to each
group, producing a new list of key-value pairs

• The resulting, final outputs can then be sorted
21

MapReduce

• Reduce-workers can already get started on their
work even although not all mapping operations
have finished yet

• Implications:

– the reduce function should output the same key-value
structure as the one emitted by the map function

– the reduce function itself should be built in such a way
so it provides correct results, even if called multiple
times

22

MapReduce

• In Hadoop, MapReduce tasks are written in Java

• To run a MapReduce task, a Java program is packaged as a
JAR archive and launched as:
hadoop jar myprogram.jar TheClassToRun [args...]

23

MapReduce

• Example: Java program to count the appearance of
a word in a file

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.*;

import org.apache.hadoop.io.*;

import org.apache.hadoop.mapreduce.*;

import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCount {

// Following fragments will be added here

} 24

MapReduce

• Define mapper function as a class extending the
built-in Mapper<KeyIn, ValueIn, KeyOut,
ValueOut> class, indicating which type of key-
value input pair we expect and which type of key-
value output pair our mapper will emit

25

MapReduce

public static class MyMapper extends Mapper<Object, Text, Text, IntWritable> {

// Our input key is not important here, so it can just be any generic object. Our input value is a piece of text (a line)

// Our output key will also be a piece of text (a word) . Our output value will be an integer.

public void map(Object key, Text value, Context context) throws IOException, InterruptedException {

// Take the value, get its contents, convert to lowercase,

// and remove every character except for spaces and a-z values:

String document = value.toString().toLowerCase().replaceAll("[^a-z\\s]", "");

// Split the line up in an array of words

String[] words = document.split(" ");

// For each word...

for (String word : words) {

// "context" is used to emit output values

// Note that we cannot emit standard Java types such as int, String, etc. Instead, we need to use
// a org.apache.hadoop.io.* class such as Text (for string values) and IntWritable (for integers)

Text textWord = new Text(word);

IntWritable one = new IntWritable(1);

// ... simply emit a (word, 1) key-value pair:

context.write(textWord, one);

}

}

}

26

MapReduce

27

Input key-value pairs

Key <Object> Value <Text>

0 This is the first line

23 And this is the second line, and this is all

Mapped key-value pairs

Key <Text> Value <IntWritable>

this 1

is 1

the 1

first 1

line 1

and 1

… …

MapReduce

• reducer function is specified as a class
extending the built-in Reducer<KeyIn,
ValueIn, KeyOut, ValueOut> class

28

MapReduce

public static class MyReducer extends Reducer<Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterable<IntWritable> values, Context context)

throws IOException, InterruptedException {

int sum = 0;

IntWritable result = new IntWritable();

// Summarise the values so far...

for (IntWritable val : values) {

sum += val.get();

}

result.set(sum);

// ... and output a new (word, sum) pair

context.write(key, result);

}

}

29

MapReduce

30

Mapped key-value pairs

Key <Text> Value <IntWritable>

this 1

is 1

the 1

first 1

line 1

and 1

this 1

is 1

Mapped key-value pairs for “this”

Key <Text> Value <IntWritable>

this 1

this 1

Reduced key-value pairs for “this”

Key <Text> Value <IntWritable>

this 1 + 1 = 2

MapReduce
public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();

// Set up a MapReduce job with a sensible short name:

Job job = Job.getInstance(conf, "wordcount");

// Tell Hadoop which JAR it needs to distribute

// to the workers.

// We can easily set this using setJarByClass

job.setJarByClass(WordCount.class);

job.setMapperClass(MyMapper.class);

job.setReducerClass(MyReducer.class);

// What does the output look like?

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

// Our program expects two arguments, the first one is the input
// file on HDFS

// Tell Hadoop our input is in the form of TextInputFormat

// (Every line in the file will become value to be mapped)

TextInputFormat.addInputPath(job, new Path(args[0]));

31

// The second argument is the output directory on

// HDFS

Path outputDir = new Path(args[1]);

// Tell Hadoop what our desired output structure is

FileOutputFormat.setOutputPath(job, outputDir);

// Delete the output directory if it exists
FileSystem fs = FileSystem.get(conf);

fs.delete(outputDir, true);

// Stop after our job has completed

System.exit(job.waitForCompletion(true) ? 0 : 1);

}

MapReduce
hadoop jar wordcount.jar WordCount /users/me/dataset.txt /users/me/output/

32

MapReduce

$ hadoop fs -ls /users/me/output
Found 2 items
-rw-r—r-- 1 root hdfs 0 2017-05-20 15:11 /users/me/output/_SUCCESS
-rw-r—r-- 1 root hdfs 2069 2017-05-20 15:11 /users/me/output/part-r-00000

$ hadoop fs -cat /users/me/output/part-r-00000
and 2
first 1
is 3
line 2
second 1
the 2
this 3

33

MapReduce

• Constructing MapReduce programs requires a
certain skillset in terms of programming

• Tradeoffs in terms of speed, memory
consumption, and scalability

34

Yet Another Resource Negotiator (YARN)

• Yet Another Resource Negotiator (YARN)
distributes a MapReduce program across different
nodes and takes care of coordination

• Three important services

– ResourceManager: a global YARN service that receives
and runs applications (e.g., a MapReduce job) on the
cluster

– JobHistoryServer: keeps a log of all finished jobs

– NodeManager: responsible to oversee resource
consumption on a node

35

Yet Another Resource Negotiator (YARN)

36

Yet Another Resource Negotiator (YARN)

37

Yet Another Resource Negotiator (YARN)

38

Yet Another Resource Negotiator (YARN)

39

Yet Another Resource Negotiator (YARN)

• Complex setup

• Allows to run programs and applications other
than MapReduce

40

SQL on Hadoop

• MapReduce very complex when compared to SQL

• Need for a more database-like setup on top of
Hadoop

41

SQL on Hadoop

• HBase

• Pig

• Hive

42

HBase

• First Hadoop database inspired by Google’s
Bigtable

• Runs on top of HDFS

• NoSQL alike data storage platform

– No typed columns, triggers, advanced query
capabilities, etc.

• Offers a simplified structure and query language in
a way that is highly scalable and can tackle large
volumes

43

HBase

• Similar to RDBMSs, HBase organizes data in tables
with rows and columns

• HBase table consists of multiple rows

• A row consists of a row key and one or more
columns with values associated with them

• Rows in a table are sorted alphabetically by the
row key

44

HBase

• Each column in HBase is denoted by a column
family and qualifier (separated by a colon, ‘:’)

• A column family physically co-locates a set of
columns and their values

• Every row has the same column families, but not
all column families need to have a value per row

• Each cell in a table is hence defined by a
combination of the row key, column family and
column qualifier, and a timestamp

45

HBase

• Example: HBase table to store and query users

• The row key will be the user id

• column families:qualifiers

– name:first

– name:last

– email (without a qualifier)

46

HBase
hbase(main):001:0> create 'users', 'name', 'email'

0 row(s) in 2.8350 seconds

=> Hbase::Table - users

hbase(main):002:0> describe 'users'

Table users is ENABLED

users

COLUMN FAMILIES DESCRIPTION

{NAME => 'email', BLOOMFILTER => 'ROW', VERSIONS => '1', IN_MEMORY => 'false', K

EEP_DELETED_CELLS => 'FALSE', DATA_BLOCK_ENCODING => 'NONE', TTL => 'FOREVER', C

OMPRESSION => 'NONE', MIN_VERSIONS => '0', BLOCKCACHE => 'true', BLOCKSIZE => '6

5536', REPLICATION_SCOPE => '0'}

{NAME => 'name', BLOOMFILTER => 'ROW', VERSIONS => '1', IN_MEMORY => 'false', KE

EP_DELETED_CELLS => 'FALSE', DATA_BLOCK_ENCODING => 'NONE', TTL => 'FOREVER', CO

MPRESSION => 'NONE', MIN_VERSIONS => '0', BLOCKCACHE => 'true', BLOCKSIZE => '65

536', REPLICATION_SCOPE => '0'}

2 row(s) in 0.3250 seconds

47

HBase

hbase(main):003:0> list 'users'

TABLE

users

1 row(s) in 0.0410 seconds

=> ["users"]

48

HBase

hbase(main):006:0> put 'users', 'seppe', 'name:first', 'Seppe'

0 row(s) in 0.0200 seconds

hbase(main):007:0> put 'users', 'seppe', 'name:last', 'vanden Broucke'

0 row(s) in 0.0330 seconds

hbase(main):008:0> put 'users', 'seppe', 'email', 'seppe.vandenbroucke@kuleuven'

0 row(s) in 0.0570 seconds

hbase(main):009:0> scan 'users'

ROW COLUMN+CELL

seppe column=email:, timestamp=1495293082872, value=seppe.vanden

broucke@kuleuven.be

seppe column=name:first, timestamp=1495293050816, value=Seppe

seppe column=name:firstt, timestamp=1495293047100, value=Seppe

seppe column=name:last, timestamp=1495293067245, value=vanden Broucke

1 row(s) in 0.1170 seconds

49

HBase

hbase(main):011:0> get 'users', 'seppe'

COLUMN CELL

email: timestamp=1495293082872,
value=seppe.vandenbroucke@kuleuven.be

name:first timestamp=1495293050816, value=Seppe

name:last timestamp=1495293067245, value=vanden Broucke

4 row(s) in 0.1250 seconds

hbase(main):018:0> put 'users', 'seppe', 'email', 'seppe@kuleuven.be'

0 row(s) in 0.0240 seconds

hbase(main):019:0> get 'users', 'seppe', 'email'

COLUMN CELL

email: timestamp=1495293303079, value=seppe@kuleuven.be
1 row(s) in 0.0330 seconds

50

HBase

• HBase’s query facilities are very limited

• Essentially a key-value, distributed data store with
simple get/put operations

• Includes facilities to write MapReduce programs

• Hbase (similar to Hadoop) doesn’t perform well on
less than 5 HDFS DataNodes with an additional
NameNode

– only makes the effort worthwhile when you can invest
in, set up and maintain at least 6-10 nodes

51

Pig

• Yahoo! Developed “Pig”, which was made open
source as Apache Pig in 2007

• High-level platform for creating programs that run
on Hadoop (in Pig Latin), which uses MapReduce
underneath

• Somewhat resembles querying facilities of SQL

52

Pig

timesheet = LOAD 'timesheet.csv' USING PigStorage(',');

raw_timesheet = FILTER timesheet by $0 > 100;

timesheet_logged = FOREACH raw_timesheet GENERATE $0 AS
driverId, $2 AS hours_logged, $3 AS miles_logged;

grp_logged = GROUP timesheet_logged by driverId;

sum_logged = FOREACH grp_logged GENERATE group as driverId,
SUM(timesheet_logged.hours_logged) as sum_hourslogged,
SUM(timesheet_logged.miles_logged) as sum_mileslogged;

53

Pig

• Some have argued that RDBMSs and SQL are
substantially faster than MapReduce – and hence
Pig

• Pig Latin is relatively procedural versus declarative
SQL

• No wide adoption

54

Hive

• Initially developed by Facebook but open-sourced
afterwards

• Data warehouse solution offering SQL querying
facilities on top of Hadoop

• Converts SQL-like queries to a MapReduce
pipeline

• Also offers a JDBC and ODBC interface

• Can run on top of HDFS, as well as other file
systems

55

Hive

• Hive Metastore stores metadata for each table such as its
schema and location on HDFS (using an RDBMS)

• Driver service is responsible to receive and handle
incoming queries

– query is first converted to an abstract syntax tree, which is then
converted to a directed acyclic graph representing an execution
plan

– the directed acyclic graph will contain a number of MapReduce
stages and tasks

• Optimizer optimizes the directed acyclic graph

• Executer sends MapReduce stages to Hadoop’s resource
manager (e.g. YARN) and monitor their progress 56

Hive

• HiveQL does not completely follow the full SQL-92
standard

– E.g., lacks strong support for indexes, transactions,
materialized views, and only has limited subquery
support

• Example:
SELECT genre, SUM(nrPages) FROM books
GROUP BY genre

• HiveQL also allows to query data sets other than
structured tables

57

Hive

CREATE TABLE docs (line STRING); -- create a docs table

-- load in file from HDFS to docs table, overwrite existing data:

LOAD DATA INPATH '/users/me/doc.txt' OVERWRITE INTO TABLE docs;

-- perform word count

SELECT word, count(1) AS count
FROM (-- split each line in docs into words

SELECT explode(split(line, '\s')) AS word FROM docs

) t

GROUP BY t.word

ORDER BY t.word;

58

Hive

• One difference with traditional RDBMS is that Hive does not
enforce the schema at the time of loading the data

– Hive: schema-on-read

– RDBMS: schema-on-write

• Recent versions of Hive support full ACID transaction
management

• Performance and speed of SQL queries still forms the main
disadvantage of Hive today

– Solutions to bypass MapReduce (e.g. Apache Tez, Cloudera Impala,

Facebook Presto)

59

Apache Spark

• Open-source alternative for MapReduce

• New programming paradigm centered on a data structure
called the resilient distributed dataset (RDD) which can be
distributed across a cluster of machines and is maintained
in a fault tolerant way

• RDDs can enable the construction of iterative programs
that have to visit a data set multiple times, as well as
more interactive or exploratory programs

• Many orders of magnitude faster than MapReduce
implementations

• Rapidly adopted by many Big Data vendors
60

Apache Spark

• Similar to Hadoop, Spark works with HDFS and
requires a cluster manager (e.g. YARN)

• Key components

– Spark Core

– Spark SQL

– MLib, Spark Streaming, GraphX

61

Spark Core

• Foundation for all other components

• Provides functionality for task scheduling and a set
of basic data transformations that can be used
through many programming languages (e.g., Java,
Python, Scala, and R)

• RDDs are the primary data abstraction in Spark

– designed to support in-memory data storage and
operations, distributed across a cluster

62

Spark Core

• Once data is loaded into an RDD, two basic types of
operations can be performed:

– Transformation which creates a new RDD through changing the
original one

– Actions which measure but do not change the original data

• Transformations are lazily evaluated

– executed when a subsequent action has a need for the result

• RDDs will also be kept as long as possible in memory

• A chain of RDD operations gets compiled by Spark into a
directed acyclic graph but which is then spread out and
calculated over the cluster

63

Spark Core

64

Spark Core

• Spark’s RDD API is relatively easy to work with
compared to writing MapReduce programs

Set up connection to the Spark cluster

sconf = SparkConf()

sc = SparkContext(master='', conf=sconf)

Load in an RDD from a text file, the RDD will represent a collection of

text strings (one for each line)

text_file = sc.textFile("myfile.txt")

Count the word occurrences

counts = text_file.flatMap(lambda line: line.split(" ")) \

.map(lambda word: (word, 1)) \

.reduceByKey(lambda a, b: a + b)

print(counts)
65

Spark SQL

• Spark SQL runs on top of Spark Core and introduces
another data abstraction called DataFrames

• DataFrames can be created from RDDs by specifying a
schema on how to structure the data elements in the
RDD, or can be loaded in directly from various sorts of file
formats

• Even although DataFrames continue to use RDDs behind
the scenes, they represent themselves to the end user as
a collection of data organized into named columns

66

Spark SQL
from pyspark.sql import SparkSession

spark = SparkSession.builder.appName("Spark example").getOrCreate()

Create a DataFrame object by reading in a file

df = spark.read.json("people.json")

df.show()

| age| name|

+----+--------+

|null| Seppe|

| 30|Wilfried|

| 19| Bart|

+----+--------+

DataFrames are structured in columns and rows:

df.printSchema()

root

|-- age: long (nullable = true)

|-- name: string (nullable = true)

67

Spark SQL

68

df.select("name").show()

+--------+

| name|

+--------+

| Seppe|

|Wilfried|

| Bart|

+--------+

SQL-like operations can now easily be expressed:

df.select(df['name'], df['age'] + 1).show()

+--------+---------+

| name|(age + 1)|

+--------+---------+

| Seppe| null|

|Wilfried| 31|

| Bart| 20|

+--------+---------+

Spark SQL

69

df.filter(df['age'] > 21).show()

+---+--------+

|age| name|

+---+--------+

| 30|Wilfried|

+---+--------+

df.groupBy("age").count().show()

+----+-----+

| age|count|

+----+-----+

| 19| 1|

|null| 1|

| 30| 1|

+----+-----+

Spark SQL

• Spark implements a full SQL query engine which can
convert SQL statements to a series of RDD
transformations and actions

Register the DataFrame as a SQL temporary view
df.createOrReplaceTempView("people")

sqlDF = spark.sql("SELECT * FROM people WHERE age > 21")

sqlDF.show()

+---+--------+

|age| name|

+---+--------+

| 30|Wilfried|

+---+--------+ 70

MLlib, Spark Streaming and GraphX

• MLlib is Spark’s machine learning library

– offers classification, regression, clustering, and
recommender system algorithms

• MLlib was originally built directly on top of the
RDD abstraction

• New MLlib version works directly with SparkSQL’s
DataFrames based API

71

MLlib, Spark Streaming and GraphX

• Spark Streaming leverages Spark Core and its
fast scheduling engine to perform streaming
analytics

• Spark Streaming provides another high-level
concept called the DStream, which
represents a continuous stream of data

– represented as a sequence of RDD fragments

• DStreams provide windowed computations

72

MLlib, Spark Streaming and GraphX
• Example: Word counting

from pyspark import SparkContext

from pyspark.streaming import StreamingContext

sc = SparkContext("local[2]", "StreamingWordCount")

ssc = StreamingContext(sc, 1)

Create a DStream that will connect to server.mycorp.com:9999 as a source

lines = ssc.socketTextStream("server.mycorp.com ", 9999)

Split each line into words

words = lines.flatMap(lambda line: line.split(" "))

Count each word in each batch

pairs = words.map(lambda word: (word, 1))

wordCounts = pairs.reduceByKey(lambda x, y: x + y)

Print out first ten elements of each RDD generated in the wordCounts Dstream

wordCounts.pprint()

Start the computation

ssc.start()

ssc.awaitTermination() 73

MLlib, Spark Streaming and GraphX

• GraphX is Spark’s component implementing
programming abstractions to deal with graph
based structures, again based on the RDD
abstraction

• GraphX comes with a set of fundamental
operators and algorithms to work with graphs and
simplify graph analytics tasks

74

Conclusion

• The 5 V’s of Big Data

• Hadoop

• SQL on Hadoop

• Apache Spark

75

More information?

www.pdbmbook.com 76

http://www.pdbmbook.com/

