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Introduction

• The 5 V’s of Big Data

• Hadoop

• SQL on Hadoop

• Apache Spark
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The 5 V’s of Big Data

• Every minute:

– More than 300000 tweets are created

– Netflix subscribers are streaming more than 70000 
hours of video at once

– Apple users download 30000 apps 

– Instagram users like almost 2 million photos

• Big Data encompasses both structured and highly 
unstructured forms of data
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The 5 V’s of Big Data

• Volume: the amount of data, also referred to the 
data “at rest”

• Velocity: the speed at which data comes in and goes 
out, data “in motion”

• Variety: the range of data types and sources that are 
used, data in its “many forms”

• Veracity: the uncertainty of the data, data “in 
doubt”

• Value: TCO and ROI of the data
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The 5 V’s of Big Data

• Examples:

– Large scale enterprise systems (e.g., ERP, CRM, SCM)

– Social networks (e.g., Twitter, Weibo, WeChat)

– Internet of Things

– Open data
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Hadoop

• Open-source software framework used for 
distributed storage and processing of big datasets

• Can be set up over a cluster of computers built 
from normal, commodity hardware

• Many vendors offer their implementation of a 
Hadoop stack (e.g. Amazon, Cloudera, Dell, Oracle, 
IBM, Microsoft)
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Hadoop

• History of Hadoop

• The Hadoop stack

7



History of Hadoop

• Key building blocks:

– Google File System: a file system that could be easily distributed 
across commodity hardware, whilst providing fault tolerance

– Google MapReduce: a programming paradigm to write programs 
that can be automatically parallelized and executed across a 
cluster of different computers

• Nutch web crawler prototype developed by Doug Cutting

– Later renamed to Hadoop

• In 2008, Yahoo! open-sourced Hadoop as “Apache 

Hadoop”
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The Hadoop Stack

• Four modules:

– Hadoop Common: a set of shared programming 
libraries used by the other modules

– Hadoop Distributed File System (HDFS): a Java-based 
file system to store data across multiple machines

– MapReduce framework: a programming model to 
process large sets of data in parallel 

– YARN (Yet Another Resource Negotiator): handles the 
management and scheduling of resource requests in a 
distributed environment
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Hadoop Distributed File System (HDFS)

• Distributed file system to store data across a 
cluster of commodity machines

• High emphasis on fault-tolerance

• HDFS cluster is composed of a NameNode and 
various DataNodes
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Hadoop Distributed File System (HDFS)

• NameNode

– a server which holds all the metadata regarding the stored files

– manages incoming file system operations

– maps data blocks (parts of files) to DataNodes

• DataNode

– handles file read and write requests

– create, delete and replicate data blocks amongst their disk 
drives 

– continuously loop, asking the NameNode for instructions.

• Note: size of 1 data block is typically 64 megabytes 
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Hadoop Distributed File System (HDFS)
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Hadoop Distributed File System (HDFS)
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Hadoop Distributed File System (HDFS)
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Hadoop Distributed File System (HDFS)
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Hadoop Distributed File System (HDFS)

• HDFS provides a native Java API to allow for writing 
Java programs that can interface with HDFS

String filePath = “/data/all_my_customers.csv”;
Configuration config = new Configuration();
org.apache.hadoop.fs.FileSystem hdfs = 
org.apache.hadoop.fs.FileSystem.get(config);
org.apache.hadoop.fs.Path path = new 
org.apache.hadoop.fs.Path(filePath);
org.apache.hadoop.fs.FSDataInputStream inputStream = 
hdfs.open(path);
byte[] received = new byte[inputStream.available()]; 
inputStream.readFully(received);
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Hadoop Distributed File System (HDFS)

// ...
org.apache.hadoop.fs.FSDataInputStream inputStream = hdfs.open(path);
byte[] buffer=new byte[1024]; // Only handle 1KB at once
int bytesRead;
while ((bytesRead = in.read(buffer)) > 0) {

// Do something with the buffered block here
}
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Hadoop Distributed File System (HDFS)
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hadoop fs -mkdir mydir Create a directory on HDFS

hadoop fs -ls List files and directories on HDFS

hadoop fs -cat myfile View a file’s content

hadoop fs -du Check disk space usage on HDFS

hadoop fs -expunge Empty trash on HDFS

hadoop fs -chgrp mygroup myfile Change group membership of a file on HDFS

hadoop fs -chown myuser myfile Change file ownership of a file on HDFS

hadoop fs -rm myfile Delete a file on HDFS

hadoop fs -touchz myfile Create an empty file on HDFS

hadoop fs -stat myfile Check the status of a file (file size, owner, …)

hadoop fs -test -e myfile Check if file exists on HDFS

hadoop fs -test -z myfile Check if file is empty on HDFS

hadoop fs -test -d myfile Check if myfile is a directory on HDFS



MapReduce

• Programming paradigm made popular by Google 
and subsequently implemented by Apache 
Hadoop

• Focus on scalability and fault tolerance

• A map-reduce pipeline starts from a series of 
values and maps each value to an output using a 
given mapper function
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MapReduce

• High-level Python example

–Map

>>> numbers = [1,2,3,4,5]
>>> numbers.map(lambda x : x * x) # Map a 
function to our list
[1,4,9,16,25]

– Reduce

>>> numbers.reduce(lambda x : sum(x) + 1) 
# Reduce a list using given function
16
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MapReduce

• A MapReduce pipeline in Hadoop starts from a list of key-
value pairs, and maps each pair to one or more output 
elements

• The output elements are also key-value pairs

• Next, the output entries are grouped so all output entries 
belonging to the same key are assigned to the same 
worker  (e.g. physical machine)

• These workers then apply the reduce function to each 
group, producing a new list of key-value pairs

• The resulting, final outputs can then be sorted
21



MapReduce

• Reduce-workers can already get started on their 
work even although not all mapping operations 
have finished yet

• Implications:

– the reduce function should output the same key-value 
structure as the one emitted by the map function

– the reduce function itself should be built in such a way 
so it provides correct results, even if called multiple 
times
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MapReduce

• In Hadoop, MapReduce tasks are written in Java

• To run a MapReduce task, a Java program is packaged as a 
JAR archive and launched as:
hadoop jar myprogram.jar TheClassToRun [args...]
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MapReduce

• Example: Java program to count the appearance of 
a word in a file 

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.*;

import org.apache.hadoop.io.*;

import org.apache.hadoop.mapreduce.*;

import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCount {

// Following fragments will be added here

} 24



MapReduce

• Define mapper function as a class extending the 
built-in Mapper<KeyIn, ValueIn, KeyOut, 
ValueOut> class, indicating which type of key-
value input pair we expect and which type of key-
value output pair our mapper will emit
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MapReduce

public static class MyMapper extends Mapper<Object, Text, Text, IntWritable> {

// Our input key is not important here, so it can just be any generic object.  Our input value is a piece of text (a line)

// Our output key will also be a piece of text (a word) . Our output value will be an integer.

public void map(Object key, Text value, Context context)  throws IOException, InterruptedException {

// Take the value, get its contents, convert to lowercase, 

// and remove every character except for spaces and a-z values:

String document = value.toString().toLowerCase().replaceAll("[^a-z\\s]", "");

// Split the line up in an array of words

String[] words = document.split(" ");

// For each word...

for (String word : words) {

// "context" is used to emit output values

// Note that we cannot emit standard Java types such as int, String, etc. Instead, we need to use 
// a org.apache.hadoop.io.* class such as Text (for string values) and IntWritable (for integers)

Text textWord = new Text(word);

IntWritable one = new IntWritable(1);

// ... simply emit a (word, 1) key-value pair:

context.write(textWord, one);

}

}

}
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MapReduce
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Input key-value pairs

Key <Object> Value <Text>

0 This is the first line

23 And this is the second line, and this is all

Mapped key-value pairs

Key <Text> Value <IntWritable>

this 1

is 1

the 1

first 1

line 1

and 1

… …



MapReduce

• reducer function is specified as a class 
extending the built-in Reducer<KeyIn, 
ValueIn, KeyOut, ValueOut> class
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MapReduce

public static class MyReducer extends Reducer<Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterable<IntWritable> values, Context context)

throws IOException, InterruptedException {

int sum = 0;

IntWritable result = new IntWritable();

// Summarise the values so far...

for (IntWritable val : values) {

sum += val.get();

}

result.set(sum);

// ... and output a new (word, sum) pair

context.write(key, result);

}

}
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MapReduce
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Mapped key-value pairs

Key <Text> Value <IntWritable>

this 1

is 1

the 1

first 1

line 1

and 1

this 1

is 1

Mapped key-value pairs for “this”

Key <Text> Value <IntWritable>

this 1

this 1

Reduced key-value pairs for “this”

Key <Text> Value <IntWritable>

this 1 + 1 = 2



MapReduce
public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();

// Set up a MapReduce job with a sensible short name:

Job job = Job.getInstance(conf, "wordcount");

// Tell Hadoop which JAR it needs to distribute 

// to the workers.  

// We can easily set this using setJarByClass

job.setJarByClass(WordCount.class);

job.setMapperClass(MyMapper.class);

job.setReducerClass(MyReducer.class);

// What does the output look like?

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

// Our program expects two arguments, the first one is the input 
// file on HDFS

// Tell Hadoop our input is in the form of TextInputFormat

// (Every line in the file will become value to be mapped)

TextInputFormat.addInputPath(job, new Path(args[0]));
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// The second argument is the output directory on 

// HDFS

Path outputDir = new Path(args[1]);

// Tell Hadoop what our desired output structure is

FileOutputFormat.setOutputPath(job, outputDir);

// Delete the output directory if it exists 
FileSystem fs = FileSystem.get(conf);

fs.delete(outputDir, true);

// Stop after our job has completed

System.exit(job.waitForCompletion(true) ? 0 : 1);

}



MapReduce
hadoop jar wordcount.jar WordCount /users/me/dataset.txt /users/me/output/
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MapReduce

$ hadoop fs -ls /users/me/output
Found 2 items
-rw-r—r-- 1 root hdfs 0 2017-05-20  15:11 /users/me/output/_SUCCESS
-rw-r—r-- 1 root hdfs 2069  2017-05-20  15:11 /users/me/output/part-r-00000

$ hadoop fs -cat /users/me/output/part-r-00000
and 2
first 1
is 3
line 2
second 1
the 2
this 3
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MapReduce

• Constructing MapReduce programs requires a 
certain skillset in terms of programming

• Tradeoffs in terms of speed, memory  
consumption, and scalability 
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Yet Another Resource Negotiator (YARN)

• Yet Another Resource Negotiator (YARN) 
distributes a MapReduce program across different 
nodes and takes care of coordination 

• Three important services

– ResourceManager: a global YARN service that receives 
and runs applications (e.g., a MapReduce job) on the 
cluster

– JobHistoryServer: keeps a log of all finished jobs

– NodeManager: responsible to oversee resource 
consumption on a node
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Yet Another Resource Negotiator (YARN)
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Yet Another Resource Negotiator (YARN)
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Yet Another Resource Negotiator (YARN)
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Yet Another Resource Negotiator (YARN)
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Yet Another Resource Negotiator (YARN)

• Complex setup

• Allows to run programs and applications other 
than MapReduce 
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SQL on Hadoop

• MapReduce very complex when compared to SQL

• Need for a more database-like setup on top of 
Hadoop
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SQL on Hadoop

• HBase

• Pig

• Hive
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HBase

• First Hadoop database inspired by Google’s 
Bigtable

• Runs on top of HDFS

• NoSQL alike data storage platform

– No typed columns, triggers, advanced query 
capabilities, etc.

• Offers a simplified structure and query language in 
a way that is highly scalable and can tackle large 
volumes

43



HBase

• Similar to RDBMSs, HBase organizes data in tables 
with rows and columns

• HBase table consists of multiple rows

• A row consists of a row key and one or more 
columns with values associated with them

• Rows in a table are sorted alphabetically by the 
row key
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HBase

• Each column in HBase is denoted by a column 
family and qualifier (separated by a colon, ‘:’)

• A column family physically co-locates a set of 
columns and their values

• Every row has the same column families, but not 
all column families need to have a value per row

• Each cell in a table is hence defined by a 
combination of the row key, column family and 
column qualifier, and a timestamp
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HBase

• Example: HBase table to store and query users 

• The row key will be the user id

• column families:qualifiers

– name:first

– name:last

– email (without a qualifier)
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HBase
hbase(main):001:0> create 'users', 'name', 'email'

0 row(s) in 2.8350 seconds

=> Hbase::Table - users

hbase(main):002:0> describe 'users'

Table users is ENABLED

users

COLUMN FAMILIES DESCRIPTION

{NAME => 'email', BLOOMFILTER => 'ROW', VERSIONS => '1', IN_MEMORY => 'false', K

EEP_DELETED_CELLS => 'FALSE', DATA_BLOCK_ENCODING => 'NONE', TTL => 'FOREVER', C

OMPRESSION => 'NONE', MIN_VERSIONS => '0', BLOCKCACHE => 'true', BLOCKSIZE => '6

5536', REPLICATION_SCOPE => '0'}

{NAME => 'name', BLOOMFILTER => 'ROW', VERSIONS => '1', IN_MEMORY => 'false', KE

EP_DELETED_CELLS => 'FALSE', DATA_BLOCK_ENCODING => 'NONE', TTL => 'FOREVER', CO

MPRESSION => 'NONE', MIN_VERSIONS => '0', BLOCKCACHE => 'true', BLOCKSIZE => '65

536', REPLICATION_SCOPE => '0'}

2 row(s) in 0.3250 seconds
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HBase

hbase(main):003:0> list 'users'

TABLE

users

1 row(s) in 0.0410 seconds

=> ["users"]
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HBase

hbase(main):006:0> put 'users', 'seppe', 'name:first', 'Seppe'

0 row(s) in 0.0200 seconds

hbase(main):007:0> put 'users', 'seppe', 'name:last', 'vanden Broucke'

0 row(s) in 0.0330 seconds

hbase(main):008:0> put 'users', 'seppe', 'email', 'seppe.vandenbroucke@kuleuven'

0 row(s) in 0.0570 seconds

hbase(main):009:0> scan 'users'

ROW                   COLUMN+CELL

seppe                column=email:, timestamp=1495293082872, value=seppe.vanden

broucke@kuleuven.be

seppe                column=name:first, timestamp=1495293050816, value=Seppe

seppe                column=name:firstt, timestamp=1495293047100, value=Seppe

seppe                column=name:last, timestamp=1495293067245, value=vanden Broucke                 

1 row(s) in 0.1170 seconds
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HBase

hbase(main):011:0> get 'users', 'seppe'

COLUMN                        CELL

email:                       timestamp=1495293082872, 
value=seppe.vandenbroucke@kuleuven.be

name:first                   timestamp=1495293050816, value=Seppe

name:last                    timestamp=1495293067245, value=vanden Broucke

4 row(s) in 0.1250 seconds

hbase(main):018:0> put 'users', 'seppe', 'email', 'seppe@kuleuven.be'

0 row(s) in 0.0240 seconds

hbase(main):019:0> get 'users', 'seppe', 'email'

COLUMN                        CELL

email:                       timestamp=1495293303079, value=seppe@kuleuven.be 
1 row(s) in 0.0330 seconds
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HBase

• HBase’s query facilities are very limited

• Essentially a key-value, distributed data store with 
simple get/put operations

• Includes facilities to write MapReduce programs 

• Hbase (similar to Hadoop) doesn’t perform well on 
less than 5 HDFS DataNodes with an additional 
NameNode

– only makes the effort worthwhile when you can invest 
in, set up and maintain at least 6-10 nodes
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Pig

• Yahoo! Developed “Pig”, which was made open 
source as Apache Pig in 2007

• High-level platform for creating programs that run 
on Hadoop (in Pig Latin), which uses MapReduce 
underneath 

• Somewhat resembles querying facilities of SQL 
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Pig

timesheet = LOAD 'timesheet.csv' USING PigStorage(',');

raw_timesheet = FILTER timesheet by $0 > 100;

timesheet_logged = FOREACH raw_timesheet GENERATE $0 AS 
driverId, $2 AS hours_logged, $3 AS miles_logged;

grp_logged = GROUP timesheet_logged by driverId;

sum_logged = FOREACH grp_logged GENERATE group as driverId, 
SUM(timesheet_logged.hours_logged) as sum_hourslogged, 
SUM(timesheet_logged.miles_logged) as sum_mileslogged;
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Pig

• Some have argued that RDBMSs and SQL are 
substantially faster than MapReduce – and hence 
Pig

• Pig Latin is relatively procedural versus declarative 
SQL

• No wide adoption
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Hive

• Initially developed by Facebook but open-sourced 
afterwards

• Data warehouse solution offering SQL querying 
facilities on top of Hadoop

• Converts SQL-like queries to a MapReduce 
pipeline

• Also offers a JDBC and ODBC interface

• Can run on top of HDFS, as well as other file 
systems 
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Hive

• Hive Metastore stores metadata for each table such as its 
schema and location on HDFS (using an RDBMS)

• Driver service is responsible to receive and handle 
incoming queries

– query is first converted to an abstract syntax tree, which is then 
converted to a directed acyclic graph representing an execution 
plan 

– the directed acyclic graph will contain a number of MapReduce 
stages and tasks 

• Optimizer optimizes the directed acyclic graph

• Executer sends MapReduce stages to Hadoop’s resource 
manager (e.g. YARN) and monitor their progress 56



Hive

• HiveQL does not completely follow the full SQL-92 
standard

– E.g., lacks strong support for indexes, transactions, 
materialized views, and only has limited subquery 
support

• Example:
SELECT genre, SUM(nrPages) FROM books 
GROUP BY genre

• HiveQL also allows to query data sets other than 
structured tables
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Hive

CREATE TABLE docs (line STRING); -- create a docs table

-- load in file from HDFS to docs table, overwrite existing data:

LOAD DATA INPATH '/users/me/doc.txt' OVERWRITE INTO TABLE docs;

-- perform word count

SELECT word, count(1) AS count
FROM ( -- split each line in docs into words

SELECT explode(split(line, '\s')) AS word FROM docs

) t

GROUP BY t.word

ORDER BY t.word;
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Hive

• One difference with traditional RDBMS is that Hive does not 
enforce the schema at the time of loading the data 

– Hive: schema-on-read

– RDBMS: schema-on-write

• Recent versions of Hive support full ACID transaction 
management

• Performance and speed of SQL queries still forms the main 
disadvantage of Hive today

– Solutions to bypass MapReduce (e.g. Apache Tez, Cloudera Impala, 

Facebook Presto)
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Apache Spark

• Open-source alternative for MapReduce

• New programming paradigm centered on a data structure 
called the resilient distributed dataset (RDD) which can be 
distributed across a cluster of machines and is maintained 
in a fault tolerant way

• RDDs can enable the construction of iterative programs 
that have to visit a data set multiple times, as well as 
more interactive or exploratory programs

• Many orders of magnitude faster than MapReduce 
implementations

• Rapidly adopted by many Big Data vendors 
60



Apache Spark

• Similar to Hadoop, Spark works with HDFS and 
requires a cluster manager (e.g. YARN) 

• Key components

– Spark Core

– Spark SQL

– MLib, Spark Streaming, GraphX
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Spark Core

• Foundation for all other components

• Provides functionality for task scheduling and a set 
of basic data transformations that can be used 
through many programming languages (e.g., Java, 
Python, Scala, and R)

• RDDs are the primary data abstraction in Spark

– designed to support in-memory data storage and 
operations, distributed across a cluster 
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Spark Core

• Once data is loaded into an RDD, two basic types of 
operations can be performed: 

– Transformation which creates a new RDD through changing the 
original one

– Actions which measure but do not change the original data 

• Transformations are lazily evaluated

– executed when a subsequent action has a need for the result

• RDDs will also be kept as long as possible in memory

• A chain of RDD operations gets compiled by Spark into a 
directed acyclic graph but which is then spread out and 
calculated over the cluster
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Spark Core
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Spark Core

• Spark’s RDD API is relatively easy to work with 
compared to writing MapReduce programs

# Set up connection to the Spark cluster

sconf = SparkConf()

sc = SparkContext(master='', conf=sconf)

# Load in an RDD from a text file, the RDD will represent a collection of

# text strings (one for each line)

text_file = sc.textFile("myfile.txt")

# Count the word occurrences

counts = text_file.flatMap(lambda line: line.split(" ")) \

.map(lambda word: (word, 1)) \

.reduceByKey(lambda a, b: a + b)

print(counts)
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Spark SQL

• Spark SQL runs on top of Spark Core and introduces 
another data abstraction called DataFrames

• DataFrames can be created from RDDs by specifying a 
schema on how to structure the data elements in the 
RDD, or can be loaded in directly from various sorts of file 
formats 

• Even although DataFrames continue to use RDDs behind 
the scenes, they represent themselves to the end user as 
a collection of data organized into named columns
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Spark SQL
from pyspark.sql import SparkSession

spark = SparkSession.builder.appName("Spark example").getOrCreate()

# Create a DataFrame object by reading in a file

df = spark.read.json("people.json")

df.show()

# | age|    name|

# +----+--------+ 

# |null|   Seppe| 

# |  30|Wilfried| 

# |  19|    Bart| 

# +----+--------+

# DataFrames are structured in columns and rows:

df.printSchema() 

# root 

# |-- age: long (nullable = true) 

# |-- name: string (nullable = true)
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Spark SQL

68

df.select("name").show() 

# +--------+ 

# |    name| 

# +--------+ 

# |   Seppe| 

# |Wilfried| 

# |    Bart| 

# +--------+

# SQL-like operations can now easily be expressed:

df.select(df['name'], df['age'] + 1).show() 

# +--------+---------+ 

# |    name|(age + 1)| 

# +--------+---------+ 

# |   Seppe|     null| 

# |Wilfried|       31| 

# |    Bart|       20| 

# +--------+---------+



Spark SQL

69

df.filter(df['age'] > 21).show() 

# +---+--------+ 

# |age|    name| 

# +---+--------+ 

# | 30|Wilfried| 

# +---+--------+

df.groupBy("age").count().show() 

# +----+-----+ 

# | age|count| 

# +----+-----+ 

# |  19|    1| 

# |null|    1| 

# |  30|    1| 

# +----+-----+



Spark SQL

• Spark implements a full SQL query engine which can 
convert SQL statements to a series of RDD 
transformations and actions

# Register the DataFrame as a SQL temporary view 
df.createOrReplaceTempView("people")

sqlDF = spark.sql("SELECT * FROM people WHERE age > 21")

sqlDF.show() 

# +---+--------+ 

# |age|    name| 

# +---+--------+ 

# | 30|Wilfried| 

# +---+--------+ 70



MLlib, Spark Streaming and GraphX

• MLlib is Spark’s machine learning library

– offers classification, regression, clustering, and 
recommender system algorithms

• MLlib was originally built directly on top of the 
RDD abstraction

• New MLlib version works directly with SparkSQL’s 
DataFrames based API

71



MLlib, Spark Streaming and GraphX

• Spark Streaming leverages Spark Core and its 
fast scheduling engine to perform streaming 
analytics

• Spark Streaming provides another high-level 
concept called the DStream, which 
represents a continuous stream of data

– represented as a sequence of RDD fragments

• DStreams provide windowed computations
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MLlib, Spark Streaming and GraphX
• Example: Word counting

from pyspark import SparkContext

from pyspark.streaming import StreamingContext

sc = SparkContext("local[2]", "StreamingWordCount") 

ssc = StreamingContext(sc, 1)

# Create a DStream that will connect to server.mycorp.com:9999 as a source 

lines = ssc.socketTextStream("server.mycorp.com ", 9999)

# Split each line into words

words = lines.flatMap(lambda line: line.split(" "))

# Count each word in each batch 

pairs = words.map(lambda word: (word, 1)) 

wordCounts = pairs.reduceByKey(lambda x, y: x + y)

# Print out first ten elements of each RDD generated in the wordCounts Dstream

wordCounts.pprint()     

# Start the computation 

ssc.start()  

ssc.awaitTermination()  73



MLlib, Spark Streaming and GraphX

• GraphX is Spark’s component implementing 
programming abstractions to deal with graph 
based structures, again based on the RDD 
abstraction 

• GraphX comes with a set of fundamental 
operators and algorithms to work with graphs and 
simplify graph analytics tasks
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Conclusion

• The 5 V’s of Big Data

• Hadoop

• SQL on Hadoop

• Apache Spark
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